
Synthetic Instances for a Management Problem in

Content Distribution Networks

Tiago Nevesa,b,∗, Luiz Satoru Ochib, Célio Abuquerqueb

aDepartamento de Ciências Exatas, Universidade Federal Fluminense-Av. dos
Trabalhadores 420, Volta Redonda/RJ, Brazil. 27255-250

bInstituto de Computação, Universidade Federal Fluminense-R Passo da Pátria 156,
Bloco E, São Domingos, Niterói/RJ, Brazil. 24210-240

Abstract

The Replica Placement and Request Distribution Problem (RPRDP) is an
optimization problem related to Content Distribution Networks (CDN) man-
agement. The objective is to reduce the operational costs of CDN providers
without violating servers’ and clients’ constraints. To the best of authors
knowledge, there are no instances available for this problem. This technical
report presents four classes of instances for RPRDP and explains, in detail,
how these instances were built.

Keywords: Content Distribution Networks, Replica Placement and
Request Distribution Problem, Instances

1. Introduction

A Content Distribution Network (CDN) is a well known kind of overlay
network that is used to reduce the network congestion by replicating contents
in servers that are geographically close to clients. One of several problems
related to CDN management is the Replica Placement Problem (RPP), that
consists in finding the best servers to place the contents in order to reduce
the total traffic in the network.

The focus of this technical report is the Replica Placement and Request
Distribution Problem (RPRDP) that is a dynamic and online problem whose

∗Corresponding author
Email addresses: tneves@ic.uff.br (Tiago Neves), satoru@ic.uff.br (Luiz

Satoru Ochi), celio@ic.uff.br (Célio Abuquerque)

Preprint submitted to Elsevier April 30, 2012



objectives are to find the best position for the content replicas and to dis-
tribute the requests through the servers, aiming at reducing the network
traffic without violating clients Quality of Service (QoS) constraints. Servers
have limited capacity in bandwidth and disk space. The QoS constraints
are given by a required minimal bandwidth and a maximum delay in which
a client’s request must be served. In the beginning, the contents are posi-
tioned only in their origin servers. As clients’ requests arrive in the CDN
system, contents may be replicated over the network and such requests may
be redistributed through the servers taking into account QoS constraints. A
server is allowed to handle a request partially or totally as long as it has a
replica of the desired content, i.e., a request may be served by several servers
at the same time. The time is divided in periods, and the optimization pro-
cess works over all periods (horizon). Besides, clients may not have enough
bandwidth to download a content in a single period of time, meaning that
several periods are necessary to handle a single request. Moreover, since the
overlay network[1] may lack the resources to handle all the requests within
the desired QoS, some requests may have the QoS requirements partially
fulfilled but every time a request is not handled within the QoS specified a
cost is paid.

RPRDP is a dynamic and online problem, meaning that costs of commu-
nication between servers can change, new contents and requests can come up
and the future scenario is not known a priori.

To the best of our knowledge, there are no instances available for the RPP
and for the RPRDP, thus, we created a set of 80 synthetic instances that are
based on the available literature on the subject. The instances include many
realistic details of the problem such as minimal and maximum bandwidth
for clients, limited capacity on servers, QoS requirements of clients, etc. The
objective of this technical report is to explain how such instances were created
so that the created instances can be used in other experiments. The instances
are divided in four classes : A, B, C and D . Each class has exactly 20
instances, 5 for each number of servers.

2. Problem Description

As mentioned before, the objective of the RPDRP is to find the best
servers to place contents replicas and to define how many and which servers
will handle each request over an horizon so that CDN providers costs are
minimized, servers constraints are not violated and requests QoS require-

2



ments satisfied when possible. in order to better explain the problem, let the
optimization horizon be divided in units called periods of time. The entire
set of periods of time is then the optimization horizon and is denoted by
T . Also let S be the set of available servers, R be the set of requests and
C be the set of contents. Each content c ∈ C has a size and a life time
(submission period and removal period) associated to it. Each server j ∈ S
has a storage capacity and a bandwidth limit. There is an overlay network
[1] interconnecting the servers and between each pair of servers j and l there
are two delay values (from j to l and from l to j) and one Round Trip Time
(RTT), that corresponds the sum of such delays. We assume that each client
i) establishes a connection with the CDN system, ii) make a single request
and iii) leaves the CDN system after his request is completely handled. Asso-
ciated to each request i ∈ R there is a desired content in C, an arrival period
in T , a server oi ∈ S that represents the server to which the client is con-
nected, a local delay ldi that represents the distance between oi and client’s
computer. There are also a delay limit TDi that represents the maximum
delay tolerated and two values of bandwidth, minimum (nbi) and maximum
(xbi), associated to each request. Since client’s bandwidth is limited, it is not
always possible to deliver the desired content in a single period, meaning that
several periods are typically required to fully handle a request. In this pa-
per, we use the maximum bandwidth of the client as demand, meaning that
whenever is possible, a client is served in its maximum bandwidth. If some
part of the bandwidth a client request, say i, is not used in some period t, it
means that i is not handled in its full capacity in period t and this missing
part is called backlog of request i in period t. In order to achieve clients max-
imum bandwidth, multiple servers are allowed to handle the same request in
the same period. There are costs associated for handling a request by each
server on the CDN and there are also costs associated to the replication of
the contents. Since the objective of the RPRDP is to reduce the operational
costs of CDN providers and also improve the quality perceived by end users,
the objective function of the problem can be expressed as follows:

Min
∑

i∈R

∑

j∈S

∑

t∈T

cijtxijt +
∑

i∈R

∑

t∈T

pitbit (1)

+
∑

k∈C

∑

j∈S

∑

l∈S

∑

t∈T

hkjltwkjlt

Where xijt is a continuous variable that represents the fraction of content

3



asked by request i handled by server j in period t; bit represents the backlog
of request i in period t, wkjlt assumes 1 only if server j replicates content
k from server l in period t; cijt represents the cost of handling request i by
server j, in period t. This cost calculated based on the fitness of each server,
thus, the servers that can handle a request in a better way have lower costs;
pit is the backlog penalty paid for request i in period t. This penalty is
greater the cost for handling request i in period t in any server; hkjlt is the
cost that server j pays for downloading content k from server l in period t.

In the RPRDP every request must be fully handled, servers bandwidth
and storage capacity must be verified and at least one replica of each con-
tent must exist in each period (except for those contents that were already
removed, or not submitted yet in the considered period). Besides, the back-
logged portion of a request must be handled in some of the periods ahead
and servers are allowed to handle requests if, and only if, they have replicas
of the desired content. The reader interested in a more detailed description
of the RPRDP is referred to [2], where the meaning of each variable and the
costs involved are better explained.

3. Duration and Number of Periods

We desingned the instances so that each period could represent approx-
imatly 60 seconds on all instances. The number of periods varies according
to the classes. Class A intances have 15 periods. Classes B, C and D have
35 periods.

4. Network Topologies

The instances creation process is divided in stages. The first stage is
to create the network topologies for the CDN servers. To do so, we used
the well known BRITE [3] topology generator. We chose BRITE because
it is free, it is capable of generating many different kinds of topologies and
because it is well known by the scientific community. We decided to create
eight topologies using the Waxman model for autonomous systems. The
topologies created have, respectively, 10, 20, 30, 50, 100, 200, 300, 400 and
500 servers. Two parameters used in the Waxman model were intentionally
chosen: The number of nodes in the topology (parameter N) and the number
of connections of each node (parameter M). The value of N was set in order
to create topologies containing the number of servers mentioned. The M

4



value was set to 2 on topology with 10 servers and to 3 on the other cases.
All other parameters were used in its default value (according to BRITE
definition).

Figure 1: BRITE Topology Generator

Figure 1 shows BRITE window with the values used to create the in-
stances for the RPRDP. The parameters N and M are marked because their
values were changed as explained before. Note that the number of server
chosen is greater than the ones used in [4, 5]

5. Network Dynamics

Second stage is to generate the network data for all periods. In order to
model the problem as described in Section ??, we need three information for

5



each arch linking two servers j and l in each period: i) the Delay between j
and l, ii) the Delay between l and j and the Round Trip Time (RTT ) j and
l. Since Delay and RTT are basic concepts of network computing we shall
not define such concepts here. For more explanation about Delay and RTT

the reader is referred to [1].
To determine the initial Delays for each link we used values that varies

between 60 and 100 milliseconds according to Uniform distribution. For
instances of classes A, B and C the values of Delayij (the delay between
server i and server j) and Delayji are the same. For instances of class D the
values of Delayij and Delayji are different. The definition of RTT is the
same for all classes: RTTij = Delayij +Delayji. These values of Delay and
RTT are referent to the first period of time considered.

After the delays and RTT are set correctly for each link in the topology it
is necessary to obtain the total delay and total RTT for each pair of servers
of the CDN system. To do so, Dijkstra algorithm [6] is used to obtain the
minimal delay and the minimal RTT for each pair of servers. As the CDN
is actually an overlay network it is reasonable to use the notation Delay
and RTT for each pair of servers in the CDN system. Although the path
between to server i and j is composed by several links, an overlay network
allows to create virtual links between each pair of servers. Thus the delay of
the virtual link between i and j is the sum of the delays of all links in the
path from i to j in the topology.

Every time a period is multiple of 5 one link in the topology taken ac-
cording to Uniform distribution and its delays and RTT are changed in the
same way they were set in the first period. Note that changing one link in
the topology can affect the delays and RTT of the whole network. We then
use the Dijkstra algorithm again in order to update the values of RTT and
delay between each pair of servers.

6. Servers

The third stage is to create servers data. To model the disk space, a
Uniform distribution was used with values between 100 and 200 MB for
instances of class A; 100 and 150 GB [7] for class B; 3 and 4 GB for class
C; 2.5 and 3.2 GB for class D. The values of class A were arbitrarily chosen.
Values for class B are based on the literature, values for classes C and D were
arbitrarily chosen in order to reduce resources availability.

6



The bandwidth available for each server is chosen randomly between 1500
and 2000 MB per period on class A; 4000 and 4050 MB per period on classes
B and C; 2300 and 2350 MB per period on class D. The values chosen for
classes B and C are based on Brazilian real network providers logs available
on the Internet on 2008. It is important to mention that each server has
an unique identifier. Since class A is composed only by test instances, the
bandwidth limits were chosen arbitrarily. As class D instances is supposed
to have less resources available, we decided to use approximately 60% of the
bandwidth used on instances of class B and C.

7. Contents

The fourth stage is to generate the contents information. To do so we
must decide the number of permanent contents and the number of volatile
contents. Permanent contents are those that are submitted in the first period
and removed in the last period. The volatile contents are those that are
submitted after the first period and removed before the last period. The
number of permanent contents is different for each class: class A uses 3;
Classes B and C use 10; Class D uses 12. The number of volatile contents
is randomly chosen in different intervals according to the instance classes:
class A uses the interval [1, 3]; Classes B and C use [1, 5]; Class D uses
[1, 7]. The submission periods for the volatile contents are randomly chosen
between periods 1 and 5, and the removal period is chosen randomly between
lastPeriod− 5 and lastPeriod for all instances.

The size of the contents in classes B, C and D was based on typical 40
minutes long videos available to download on the Internet. These values are
set to be between 250 and 400 MB for classes B and C, between 350 and
450 for class D. Since class A is built only for tests the values used were
arbitrarily chosen between 10 and 20 MB.

The last information needed to create the contents data is the origin
server. This information represents the server where the content is first
submitted. Each content must have only one server as origin although the
same server can be chosen as origin for many servers. The origin server is
chosen according to the Uniform distribution for all contents.

8. Requests

The last stage to create an instance is to generate the request information.
This stage must be the last because the information about the servers and

7



about the contents are necessary here. The information about contents are
necessary because it is known that some contents are more popular than
others [8, 7] and because we can not create requests for contents that are not
available yet in the current period nor for contents that were already removed
from the CDN system. Information about the number of server is required as
well since the greater the number of servers the greater the number of clients
expected. Another reason for the fact that we need the number of servers to
create the requests is that each requests has an origin server associated to it.
This origin server is the client’s access point to the CDN system. In other
words is the CDN server to which the client is connected.

It is known that some contents are more popular than others and that it
implies in a greater number of requests for such popular contents. In order
to model this popularity differences we decided that the permanent contents
should be more popular than the volatile contents and that, contents of
lower id should be more popular than the higher id contents. This decision
was made in order to establish the priority order of the contents, however,
the real popularity of the contents (number of requests) in the instances is
determined according to a Random Distribution based in such priority. To
decide the number of requests per period of the instances we used different
methodologies in each instance class. In class A we decide to use an arbitrary
number of requests. In classes B, C and D the number of requests is given by
the following equation: reqt = rand(20, 25) × numberOfServers/5, where
reqt is the total of requests in period t. Having calculated the number of
requests for a period we must determine how we should divide such requests
through the contents. According to [9] and [10] search requests for multiple
keys tend to follow a distribution pattern that is similar to Zipf distribution
[11]. In this distribution, most popular keys attract the great majority of
the requests. In this sense, we decide that in instances of classes A, B and
C, the number of requests of content k in a period t is given by reqkt =
reqt × (NC − (pk − 1))/

∑NC

s=1 s, where NC is the total number of contents
and pk is the position of content k in the popularity list of contents. For
example, the most popular content has pk = 1, the second most popular has
pk = 2 and so on. The especial case for the number of requests is the less
popular content. We use the mentioned equation to determine the number
of requests for all contents but one, the less popular one. After deciding
the number of requests of all other contents, the less popular one take the
remaining requests. For example, suppose that there are 100 requests and
3 contents. According to the given equations, the most popular content

8



gets 50 requests, the second most popular gets 33 and the third gets the
remaining requests, i.e., 17 requests. It is important to say that in classes
B and C, all contents have requests in all periods. On instances of class
D there are no defined fraction of requests for each content. The requests
are distributed randomly according to Zipf distribution, as described in [10]
using the parameter α = 0.75.

It is also necessary to associate a local delay for each request. These delays
represent the distance between the client’s computer and the CDN server to
which such client is connected (origin server). The values for such delays
are chosen according to the following intervals: [50, 100] ms for instances of
classes A, B and C, and [250, 300] for class D. The QoS data for each request
are maximum delay, minimum bandwidth and maximum bandwidth. The
maximum delay used is randomly chosen in the interval [400, 800] for all
classes and is expressed in ms. The minimum bandwidth uses the following
intervals: [5, 6] MB per period (bandwidth × δ) on class A and [40, 42] MB
per period on classes B, C e D. Maximum bandwidth is chosen according
to the following intervals: [7, 10] MB per period on class A and [45, 50] MB
per period on classes B, C and D. An origin server is also attributed to each
request according to the Uniform distribution.

9. Summary

Table 1 briefly presents the instances sets and some of the intervals used.
Each set contains 5 instances and all values were chosen using uniform distri-
bution on the respective intervals. First column shows the instance class and
the number of servers. Column two depicts the server bandwidth interval
in MB per period. Column three describes the server disk space interval in
GB. Column four exposes the intervals for the number of contents. Column
five exposes the size of the contents interval in MB. Column six shows the
intervals for the number of requests. Columns seven and eight expose inter-
vals, in MB per period, for the requests’ minimum and maximum bandwidth,
respectively.

10. Use in publications

As the instances set is always growing, we decide to mention here which
instances were used in each publication.

1. [12] All instances of classes A,B and C.

9



Instance Serv. Band Serv. Disk # Cont. Cont. Size # Req. Min Band Max Band
10A [1500,2000] [0.1,0.2] [4,6] [10,20] [400,650] [5,6] [7,10]
10B [4000,4050] [100,150] [11,15] [250,400] [600,700] [40,42] [45,50]
10C [4000,4050] [3,4] [11,15] [250,400] [600,700] [40,42] [45,50]
10D [2300,2350] [2.5,3.2] [13,17] [350,450] [600,700] [40,42] [45,50]
20A [1500,2000] [0.1,0.2] [4,6] [10,20] [700,1400] [5,6] [7,10]
20B [4000,4050] [100,150] [11,15] [250,400] [1200,1700] [40,42] [45,50]
20C [4000,4050] [3,4] [11,15] [250,400] [1200,1700] [40,42] [45,50]
20D [2300,2350] [2.5,3.2] [13,17] [350,450] [1200,1700] [40,42] [45,50]
30A [1500,2000] [0.1,0.2] [4,6] [10,20] [1700,2400] [5,6] [7,10]
30B [4000,4050] [100,150] [11,15] [250,400] [1900,2400] [40,42] [45,50]
30C [4000,4050] [3,4] [11,15] [250,400] [1900,2400] [40,42] [45,50]
30D [2300,2350] [2.5,3.2] [13,17] [350,450] [1900,2400] [40,42] [45,50]
50A [1500,2000] [0.1,0.2] [4,6] [10,20] [3200,3800] [5,6] [7,10]
50B [4000,4050] [100,150] [11,15] [250,400] [3200,3400] [40,42] [45,50]
50C [4000,4050] [3,4] [11,15] [250,400] [3200,3400] [40,42] [45,50]
50D [2300,2350] [2.5,3.2] [13,17] [350,450] [3200,3400] [40,42] [45,50]

Table 1: Instances intervals

2. [2] All instances of classes A,B and C.

3. Future publication will be included here.

11. Conclusions

This technical report presents how 80 synthetic instance to the RPRDP
were created. The instances are available on the LABIC project [13] website.
To the best of our knowledge, this set of instances is the first set that con-
sider simultaneously several realistic characteristics such as QoS requisites,
different server capacities and content dynamics available.

References

[1] J. Kurose, K. Ross, Computer Networking: a Top-Down Approach Fea-
turing the Internet, Addison-Wesley, 2003.

[2] T. Neves, L. Drummond, L. Ochi, C. Albuquerque, E. Uchoa, Solv-
ing replica placement and request distribution in content distribution
networks, Electronic Notes in Discrete Mathematics 36 (2010) 89–96.

[3] BRITE, World Wide Web, http://www.cs.bu.edu/brite/, 2007.

[4] W. Aioffi, G. Mateus, J. Almeida, A. Loureiro, Dynamic content distri-
bution for mobile enterprise networks, IEEE Journal on Selected Areas
in Communications 23 (2005) 2022–2031.

10



[5] O. Wolfson, S. Jajodia, Y. Huang, An adaptive data replication algo-
rithm, ACM Transactions on Database Systems 22 (1997) 255–314.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press and McGraw-Hill, second edition, 2001.

[7] X. Zhou, C.-Z. Xu, Efficient algorithms of video replication and place-
ment on a cluster of streaming servers, Journal of Network and Com-
puter Applications 30 (2007) 515–540.

[8] T. Bektas, O. Oguz, I. Ouveysi, Designing cost-effective content distri-
bution networks, Computers & Operations Research 34 (2007) 2436–
2449.

[9] T. Wauters, J. Coppens, B. Dhoedt, P. Demeester, Load balancing
through efficient distributed content placement, in: Next Generation
Internet Networks, pp. 99–105.

[10] L. Breslau, P. Cao, G. Phillips, S. Shenker, Web Caching and Zipf-like
Distribuitions: Evidence and Implications, in: Proceedings of IEEE
INFOCOM 99, pp. 126–134.

[11] G. K. Zipf, Relative Frequency as a Determinant of Phonetic Change,
volume 40 of Harvard Studies Classical Philology, Harvard University
Press, 1929.

[12] T. Neves, L. Drummond, E. Uchoa, L. Ochi, C. Albuquerque, Replicação
e distribuição Online em redes de distribuição de conteúdos, in: Anais
do XLI Simpósio Brasileiro de Pesquisa Operacional, pp. 2717–2727.

[13] LABIC, World Wide Web,http://labic.ic.uff.br/, 2005.

11


